M1. (a) $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$
(b) $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$
(c) Moles MnO_{4}^{-}in $19.6 \mathrm{~cm}^{3}$
$=19.6 \times 0.022 \times 10^{-3}=4.312 \times 10^{-4}$

Moles Fe^{2+} in $25 \mathrm{~cm}^{3}$
$=5 \times 4.312 \times 10^{-4}=2.156 \times 10^{-3}$

Moles Fe^{2+} in $250 \mathrm{~cm}^{3}$
$=10 \times 2.156 \times 10^{-3}=2.156 \times 10^{-2}$

Mass $\mathrm{Fe}^{2+}=$ moles $\times A_{\text {, }}$
$A_{\mathrm{r}}=2.156 \times 10^{-2} \times 55.8=1.203 \mathrm{~g}$

Percentage by mass of carbon
$=(1.270-1.203) \times 100 / 1.270$
= 5.28%
(d) Repeat the titration and take an average of the concordant results
(e) Analyse several samples from different parts of the molten iron

1

M2. (penalty for sig fig error =1 mark per question)
(a) neutron: relative mass $=1$ relative charge $=0$ (not 'neutral')
electron: \quad relative mass $=1 / 1800 \rightarrow 0$ /negligible or $5.56 \times 10-4 \rightarrow 0$ relative charge $=-1$
(b) mass number (Do not accept 17.0) oxygen symbol ' O ’ (if 'oxygen' + - 'mass number $=17$ '(1)) (if 'oxygen'+ - 'mass number $=17$ '(0)) (if at N° given but $\neq 8$, treat as 'con' for M2) (if Ip on Be , diagram $=0$) (ignore bond angles) (not dot and cross diagrams)
(c)

QoL Linear (1) bent / V-shaped / angular (1)
(mark name and shape independently)
(accept (distorted) tetrahedral)
(if balls instead of symbols, lose M1 - can award M2)
(penalise missing 'Cl' once only)
(not 'non-linear')
(d) $\quad M_{r}\left(\mathrm{Mg}_{\left(\mathrm{NO}_{3}\right)_{2}}=58(.3)\right.$ (if At N^{o} used, lose M1 and M2)
moles $\mathrm{Mg}(\mathrm{OH})_{2}=0.0172$ (conseq on wrong M2) (answer to $\underline{3+\text { s.f. }}$)
moles $\mathrm{HCl}=2 \times 0.0172=0.0344$ or $0.0343(\mathrm{~mol})$ (process mark)

$$
\begin{aligned}
\text { vol } \mathrm{HCI}= & \frac{0.0343 \times 1000}{1}=34.3-34.5\left(\mathrm{~cm}^{3}\right) \text { (unless wrong unit) } \\
& \text { (if candidate used } 0.017 \text { or } 0.0171 \text { lose M2) } \\
& \text { (just answer with no working, if in range }=(4) . \\
& \text { if, say, } 34 \text { then }=(2) \text {) } \\
& \text { (if not } 2: 1 \text { ratio, lose } M 3 \text { and } \mathrm{M} 4 \text {) } \\
& \text { (if work on } \mathrm{HCl}, \mathrm{CE}=0 / 4 \text {) }
\end{aligned}
$$

M3.C

M4.D

M5.C

M6.
(a) (i) $\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$
(allow ionic formulae)
or $\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}$
(ii) $\mathrm{PV}=\mathrm{nRT} \mathrm{n}=\mathrm{PV} / \mathrm{RT}$
(allow either formula but penalise contradiction)

$$
\begin{aligned}
& n=\frac{110000 \times 102 \times 10^{-6}}{8.31 \times 298} \\
& =4.53 \times 10^{-3}(\mathrm{~mol})
\end{aligned}
$$

(iii) Moles of iron $=4.5(3) \times 10^{-3} \mathrm{~mol}$
(allow conseq on (a)(ii))
(or $=4.2(5) \times 10^{-3}$ if candidate uses given moles of hydrogen)

Mass of iron $=4.53 \times 10^{-3} \times 55.8=0.253 \mathrm{~g}$
(mark is for method mass $=$ moles $\times A_{r}$)
(Mass of iron can be 56)
(iv) $0.253 \times 100 / 0.263=96.1 \%$ (mark is for answer to 2 sig. figs.)
(allow conseq on mass of iron. E.g. $=90 \%$ from
$4.2(5) \times 10^{-3} \mathrm{moles}$ of H_{2} and Fe)
(Do not allow answers greater than or equal to 100\%)

1
(b) (i) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
(ignore state symbols)
$\mathrm{Cr}_{2} \mathrm{O}_{7^{2-}}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}$
(ii) Moles of dichromate $=$ moles $\mathrm{Fe}^{2+} / 6$
$=4.53 \times 10^{-3 / 6}=7.55 \times 10^{-4}$
(Allow conseq, mark is for method (a)(iii)/6)

Volume of dichromate $=$ moles/concentration
($\left.=\left(7.55 \times 10^{-4} \times 1000\right) / 0.0200\right)$
(mark is for this method)
1
$\mathrm{V}=37.75\left(\mathrm{~cm}^{3}\right)$
(allow 37.7 to 37.8, allow no units but penalise wrong units)
(allow conseq on moles of dichromate)
(if value of 3.63×10^{-3} used answer is 30.2 to 30.3 ,
otherwise ans $=$ moles $\mathrm{Fe}^{2+} / 0.00012$)
(if mole ratio wrong and candidate does not divide by 6, max score is ONE for volume method)

(iii) $\left(\mathrm{KMnO}_{4}\right)$ will also oxidise (or react with) Cl^{-}(or chloride or HCl)

M7. (a) (i) Avogadro's number/constant of molecules/particles/species / 6×10^{23} [Not 'atoms']

Or same number of particles as (there are atoms) [Not molecules]
in $12 .(00) \mathrm{g}$ of ${ }^{12} \mathrm{C}$
1

1
(ii) Moles $\mathrm{O}_{2}=\frac{0.350}{32}\left(=1.09 \times 10^{-2} \mathrm{~mol}\right)$
$=29\left(\times 1.09 \times 10^{-2}\right)$
[Accept answers via 4 separate mole calculations]
$=0.316-0.317 \mathrm{~mol}$ [answer to $3+\mathrm{sf}$]
[Mark conseq on errors in M1/M2] (1)
(iii) Moles of nitroglycerine $=4 \times 1.09 \times 10^{-2} \quad(=0.0438 \mathrm{~mol})$
[Mark conseq on their moles of O_{2}]
M_{r} of nitroglycerine $=227$ or number string

Moles of nitroglycerine $=227 \times 0.0438=9.90-9.93(\mathrm{~g})$
[answer to 3+ sf]
[If string OK but final answer wrong then allow M6 but AE for M7]
[Mark conseq on error in M] [Penalise wrong units]
[Penalise sig. fig. errors once only in whole question]

Page 6

(b) $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{pV}=\frac{m \mathrm{RT}}{\mathrm{V}}$ or $\mathrm{p}=\frac{\frac{n \mathrm{R} T}{V}}{\mathrm{~V}}$

$$
\begin{aligned}
& \mathrm{p}= \frac{n \mathrm{RT}}{\mathrm{~V}}= \\
&= \frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}} \\
& 7980093 \text { or } 7980 \text { or } 7.98 \\
& \text { [ignore s.f.] } \\
& \text { units = Pa or kPa or MPa } \quad \text { (as appropriate) } \\
& \quad \text { [If error in conversion from Pa, treat as a contradiction of the } \\
& \text { units mark] } \\
& \text { [If transfer error, mark conseq but penalise M2] } \\
& \text { [If data from outside of above used, penalise M2 and M3] } \\
& \text { [If pV expression incorrectly rearranged, penalise M2 and } \\
& \text { M3] } \\
& \text { [if } T=1373 \mathrm{~K} \text { used, penalise M2] }
\end{aligned}
$$

M8.
(a) (i) (free-)radical substitution
(both words required for the mark)
(ii) uv light OR sunlight OR high temperature $\operatorname{OR} 150^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$
(iii) Propagation
(ignore "chain", "first", "second" in front of the word propagation)
(iv) Termination

$\mathrm{OR} 2 \cdot \mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
(penalise if radical dot is obviously on CH_{3}, but not otherwise)
(penalise $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ}$)
(b) (i) Fractional distillation OR fractionation (credit gas-liquid chromatography, GLC)
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{3}+6 \mathrm{Br}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{Br}_{6}+6 \mathrm{HBr}$ (credit $\mathrm{C}_{2} \mathrm{H}_{6}$ for ethane)
(c) Correct structure for $\mathrm{CF}_{2} \mathrm{BrCF} F_{2} \mathrm{Br}$ drawn out (penalise "Fl" for fluorine)
(d) (i) 2-bromo-2-chloro-1,1,1-trifluoroethane OR 1-bromo-1-chloro-2,2,2-trifluoroethane (insist on all numbers, but do not penalise failure to use alphabet) (accept "flourine" and "cloro" in this instance)
(ii) 197.4 only (ignore units)
(iii) $\quad(57 / 197.4 \times 100)=28.9 \%$ OR 28.88%
(credit the correct answer independently in part (d)(iii), even if (d)(ii) is blank or incorrectly calculated, but mark consequential on part (d)(ii), if part (d)(ii) is incorrectly calculated, accepting answers to 3sf or 4sf only)
(penalise 29% if it appears alone, but not if it follows a correct answer)
(do not insist on the \% sign being given)
(the percentage sign is not essential here, but penalise the use of units e.g. grams)

