M1.		(a) Fe + H ₂ SO ₄ \rightarrow FeSO ₄ + H ₂	1
	(b)	$MnO_{4^{-}} + 8H^{+} + 5Fe^{2*} \rightarrow Mn^{2*} + 4H_{2}O + 5Fe^{3*}$	1
	(c)	Moles MnO₄⁻ in 19.6 cm³ = 19.6 × 0.022 × 10⁻³ = 4.312 ×10⁻⁴	1
		Moles Fe ^₂ in 25 cm³ = 5 × 4.312 × 10 ^{-₄} = 2.156 × 10 ^{-₃}	1
		Moles Fe ^₂ in 250 cm³ = 10 × 2.156 × 10⁻³ = 2.156 × 10⁻²	1
		Mass Fe ²⁺ = moles × A_r A_r = 2.156 × 10 ⁻² × 55.8 = 1.203 g	1
		Percentage by mass of carbon = (1.270 – 1.203) × 100/1.270 = 5.28%	1
	(d)	Repeat the titration and take an average of the concordant results	1
	(e)	Analyse several samples from different parts of the molten iron	1

M2. (penalty for sig fig error =1 mark per question)

[9]

(a)	neutron:	relative mass = 1 (not 'neutral')	relative charge = 0	1
	electron:	relative mass = 1/18	$00 \rightarrow 0$ /negligible <i>or</i>	Ĩ
	5.56 × 10–	4 $ ightarrow$ 0 relative charge = -	-1	1
(b)	¹⁷ O/O ¹⁷	mass number	(Do not accept 17.0)	1
	oxygen sy	vmbol 'O' (if 'oxygen' + — 'mass r (if 'oxygen'+ — 'mass n (if at N° given but ≠ 8, tr (if lp on Be, diagram = 0 (ignore bond angles) (not dot and cross diagr	umber = 17'(0)) eat as 'con' for M2)))	1
(c) C1 -	— Be——	cı CP/~	Ċ	
	QoL Linea	(mark name and shape (accept (distorted) tetra	hedral) ols, lose M1 – can award M2)	2
		(not 'non-linear')	···· ··· · · · · · · · · · · · · · · ·	2
(d)	<i>M</i> , (Mg(NC	D ₃) ₂ = 58(.3) <i>(if At N° used</i>	, lose M1 and M2)	1
	moles Mg	(OH)₂ = 0.0172 (conseq o	on wrong M2) (answer to <u>3+ s.f.</u>)	1
	moles HC	il = 2 × 0.0172 = 0.0344 d	or 0.0343 (mol) (process mark)	1

	vol HCI =	$= \frac{0.0343 \times 1000}{1} = 34.3 - 34.5 \text{ (cm}^{3}\text{) (unless wrong unit)}$ (if candidate used 0.017 or 0.0171 lose M2) (just answer with no working, if in range = (4). if, say, 34 then =(2)) (if not 2:1 ratio, lose M3 and M4) (if work on HCI, CE = 0/4) 1	[12]
M3. C			[1]
M4. D			[1]
M5. C			[1]
M6.	or F	$Fe + 2HCI \rightarrow FeCI_{2} + H_{2}$ (allow ionic formulae) $Fe + 2H^{*} \rightarrow Fe^{2*} + H_{2}$ 1	
	(ii) PV <i>n</i> =	= nRT n = PV/RT (allow either formula but penalise contradiction) $\frac{110000 \times 102 \times 10^{-6}}{8.31 \times 298}$	
	= 4.	.53 × 10⊸ (mol)	

1

	(iii)	Moles of iron = 4.5(3) × 10⁻³ mol (allow conseq on (a)(ii))	
		(or = $4.2(5) \times 10^{-3}$ if candidate uses given moles of hydrogen)	1
		Mass of iron = $4.53 \times 10^{-3} \times 55.8 = 0.253$ g (mark is for method mass = moles × A_r) (Mass of iron can be 56)	
			1
	(iv)	$0.253 \times 100/0.263 = 96.1 \%$ (mark is for answer to 2 sig. figs.) (allow conseq on mass of iron. E.g. = 90% from $4.2(5) \times 10^{-3}$ moles of H_2 and Fe)	
		(Do not allow answers greater than or equal to 100%)	1
(b)	(i)	Fe²⁺ → Fe³⁺ + e⁻	
(6)	(1)	(ignore state symbols)	
			1
		$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O	1
		$Cr_2O_7^{2-}$ + 14H ⁺ + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺	
		Ol_2O_7 · Ol_2O_7 · Ol_2O_7 · Ol_2O_7 · Ol_2O_7 · Ol_2O_7	1
	(ii)	Moles of dichromate = moles Fe ²⁺ /6	
		= 4.53 × 10 ⁻ 3/6 = 7.55 × 10 ⁻ 4 (Allow conseg, mark is for method (a)(iii)/6)	
			1
		Volume of dichromate = moles/concentration (= (7.55 × 10 ^{-₄} × 1000)/0.0200)	
		(mark is for this method)	1
		V = 37.75 (cm ³)	
		(allow 37.7 to 37.8, allow no units but penalise wrong units)	
		(allow conseq on moles of dichromate)	
		(if value of 3.63 × 10³ used answer is 30.2 to 30.3, otherwise ans = moles Fe²+/0.00012)	
		(if mole ratio wrong and candidate does not divide by 6,	

(if mole ratio wrong and candidate does not divide by 6, max score is ONE for volume method)

Page 5

	(iii)	(KMnO₄) will also oxidise (or react with) Cl⁻ (or chloride or HCl)	1
M7.	(a)	 (i) Avogadro's number/constant of molecules/particles/species / 6 × [Not 'atoms'] 	: 10 ²³ 1
		Or same number of particles as (there are atoms) <i>[Not molecules]</i>	
		in 12.(00)g of ¹² C	1
		0.350	
	(ii)	Moles $O_2 = \frac{0.350}{32}$ (= 1.09 × 10 ⁻² mol)	1
		= 29 (× 1.09 × 10 ⁻²) [Accept answers via 4 separate mole calculations]	1
		= 0.316 – 0.317 mol [answer to 3 + sf] [Mark conseq on errors in M1/M2] (1)	
			1
	(iii)	Moles of nitroglycerine = $4 \times 1.09 \times 10^{-2}$ (= 0.0438 mol) [Mark conseq on their moles of O_2]	
		M_r of nitroglycerine = 227 or number string	1
		Moles of nitroglycerine = 227 × 0.0438 = 9.90 – 9.93(<u>g)</u> <i>[answer to 3</i> + s <i>f]</i>	
		[If string OK but final answer wrong then allow M6 but AE for M7]	
		[Mark conseq on error in M,] [Penalise wrong units] [Penalise sig. fig. errors once only in whole question]	

[14]

(b)	$pV = nRT \text{ or } pV = \frac{mRT}{V} \text{ or } p = \frac{mRT}{V}$	1	
	$p = \frac{nRT}{V} = \frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}}$		
		1	
	= 7980093 or 7980 or 7.98		
	[ignore s.f.]	1	
	units = Pa or kPa or MPa (as appropriate)		
	[If error in conversion from Pa, treat as a contradiction of the units mark]		
	[If transfer error, mark conseq but penalise M2]		
	[If data from outside of above used, penalise M2 and M3]		
	[If pV expression incorrectly rearranged, penalise M2 and M3]		
	[if T = 1373 K used, penalise M2]		
		1	

[11]

M8. (a) (i) (free-)radical substitution (both words required for the mark) 1 uv light OR sunlight OR high temperature OR 150 °C to 500 °C (ii) 1 (iii) Propagation (ignore "chain", "first", "second" in front of the word propagation) 1 (iv) Termination 1 • CH_2CH_3 + Br• \longrightarrow CH_3CH_2Br $OR 2 \cdot CH_2 CH_3 \longrightarrow C_4 H_{10}$ (penalise if radical dot is obviously on CH₃, but not otherwise) (penalise C_2H_5 •)

		(credit 2Br•──► Br₂) (ignore "chain" in front of the word termination)	1
(b)	(i)	<u>Fractional</u> distillation OR fractionation (credit gas–liquid chromatography, GLC)	1
	(ii)	$CH_{3}CH_{3} + 6Br_{2} \longrightarrow C_{2}Br_{6} + 6HBr$ (credit C ₂ H ₆ for ethane)	1
(c)	Corr	ect structure for CF₂BrCF₂Br drawn out (penalise "FI" for fluorine)	1
(d)	(i)	2–bromo–2–chloro–1,1,1–trifluoroethane OR 1–bromo–1–chloro–2,2,2–trifluoroethane <i>(insist on <u>all</u> numbers, but do not penalise failure to use alphabet) (accept "flourine" and "cloro" in this instance)</i>	1
	(ii)	197.4 only <i>(ignore units)</i>	1
	(iii)	 (57/197.4 × 100) = 28.9% OR 28.88% (credit the correct answer independently in part (d)(iii), even if (d)(ii) is blank or incorrectly calculated, but mark <u>consequential on part (d)(ii)</u>, if part (d)(ii) is incorrectly calculated, accepting answers to 3sf or 4sf only) (penalise 29% if it appears alone, but not if it follows a correct answer) (do not insist on the % sign being given) (the percentage sign is not essential here, but penalise the use of units e.g. grams) 	1

[11]